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1 Introduction

Minkowski theorem states that if a convex subset of Rn is centrally symmetric with
respect to 0 and has a big enough volume, then it contains a non-trivial point with
integer coordinates, i.e. a point of Zn . This result was proved by H. Minkowski in
1889, and initiated a whole field, now called geometry of numbers (see for example
the books [4,12,15] or [2]). Since then, this theorem has led to many applications in
various fields such as algebraic number theory, Diophantine approximation, harmonic
analysis or complexity theory.

The goal of the present paper is to state a Minkowski theorem in the more general
context where the lattice Zn is replaced by a quasicrystal of Rn . More precisely, we
will be interested in sets satisfying the following definition.

Definition 1.1 Let � ⊂ Rn be a discrete set.

• The upper density of � is:

D+(�) = lim
R→+∞

#(BR ∩ �)

Vol(BR)
,

where BR stands for the ball of radius R centred at 0.
• The set of differences of � is defined as

�� = � − � = {γ1 − γ2 | γ1, γ2 ∈ �}.

• We will say that � is Minkowski compatible if D+(�) ∈ ]0,+∞[ and �� is
discrete.

Note that Minkowski compatible sets include Meyer sets (see [8]). Given a
Minkowski compatible set � ⊂ Rn and a centrally symmetric convex body S, it
is always possible to remove a finite subset from � such that the resulting set �′ is still
Minkowski compatible and satisfies �′ ∩ S = ∅. Therefore, one cannot hope to get
a meaningful statement of Minkowski theorem involving only the number of points
in S ∩ � and D+(�). The solution is to average upon the whole set, and to intro-
duce the so-called frequency of differences. The frequency of the difference u ∈ Rn

is defined as the density ρ�(u) of the set � ∩ (� − u) divided by the density of �

(Definition 2.1). Again, the fact that the set � is Minkowski compatible is important
here: it implies that the support of ρ� is discrete. The main result of this paper is the
following (Theorem 3.2).

Theorem 1.2 Let � ⊂ Rn be a Minkowski compatible set, and S ⊂ Rn be a centrally
symmetric convex body. Then

∑

u∈S
ρ�(u) ≥ D+(�)Vol(S/2).

This theorem brings a new insight to the classical Minkowski theorem. It shows
that the object of interest is in fact the set of differences of elements in � (which, for
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a lattice, is equal to �). In some sense, this point of view is already present in the
original proof of Minkowski and the proof proposed in the sequel critically uses this
fact. This is the purpose of Sect. 3.

In Sect. 4, we define weakly almost periodic sets (see Definition 4.1). We then
state some nice properties of such sets in the view of the application of our main
theorem, in particular the uniform upper density and the frequency of differences of
a weakly almost periodic set are defined as limits (and no longer as upper limits).
Roughly speaking, a set � is weakly almost periodic if given any ball B large enough,
the intersection of � with any translate t (B) of B is a translation of B ∩ � up to a
proportion of points ε arbitrarily small. Such sets include a large class of quasicrystals,
in particular model sets (and, of course, lattices).

The remainingpart of the paper is dedicated to twoapplications of ourmain theorem.
We investigate Diophantine approximation in Sect. 5.1. A corollary is derived to show
the existence of a couple of points in a quasicrystal for which the slope of the line
defined by those points is arbitrarily close to a fixed, chosen slope. Another application
is also considered: for any given irrational number α and any positive number ε, the
set Eε

α of integers n such that nα is ε-close to 0 is a weakly almost periodic set. Hence,
estimates of the mean number of points in Eε

α which lie in the “neighbourhood”
[x − d, x + d] of a point x ∈ Eε

α can be given.
In Sect. 5.2, a second application deals with discretizations of linear isometries. In

particular, it shows that in most cases, it is impossible not to lose information while
performing discrete rotations of numerical images with a naive algorithm.

2 Definitions

We begin with a few notations. The symmetric difference of two sets A and B will be
denoted by A�B = (A\B) ∪ (B\A).

We will use #A for the cardinality of a set A, λ for the Lebesgue measure on Rn and
1 for the indicator function. The number �x� will denote the smallest integer bigger
than x . For a set A ⊂ Rn , we will denote byVol(A) the volume of the set A. Recall that
the notation BR will refer to the ball of radius R centred at 0. Finally, for any integer n,
the number μn will refer to the volume of the unit ball of dimension n. We will often
use the notation

∑
x∈A f (x) with A an uncountable set with no further justification:

in this paper, every such f considered will be non-negative with countable support.

Definition 2.1 For every v ∈ Rn , we set

ρ�(v) = D+{x ∈ � | x + v ∈ �}
D+(�)

= D+(� ∩ (� − v))

D+(�)
∈ [0, 1]

the frequency of the difference v in the Minkowski compatible set �.

It is immediate to see that the support of ρ� is discrete as it is included in the set
��. Remark that when � is a lattice, the set � ∩ (� − v) is either equal to � (when
v ∈ �), either empty (when v /∈ �). Hence, ρ�(v) = 1v∈� and for any subset A of
Rn ,

∑
v∈A ρ�(v) counts the number of elements of � falling in A.
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Definition 2.2 We say that the function f admits a mean M( f ) if for every ε > 0,
there exists R0 > 0 such that for every R ≥ R0 and every x ∈ Rn , we have (whenever
the sum makes sense)

∣∣∣M( f ) − 1

Vol(B(x, R))

∑

v∈B(x,R)

f (v)

∣∣∣ < ε.

3 A Minkowski Theorem for Quasicrystals

We now state a Minkowski theorem for the map ρ� . To begin with, we recall the
classical Minkowski theorem which is only valid for lattices (see for example IX.3 of
[1] or the whole books [2,4,15]).

Theorem 3.1 (Minkowski) Let	 be a lattice of Rn, k ∈ N and S ⊂ Rn be a centrally
symmetric convex body. IfVol(S/2) > k covol(	), then S contains at least 2k distinct
points of 	\{0}.

In particular, if Vol(S/2) > covol(	), then S contains at least one point of 	\{0}.
This theorem is optimal in the following sense: for every lattice 	, there exists a
centrally symmetric convex body S such that Vol(S/2) = k covol(	) and that S
contains less than 2k distinct points of 	\{0}.
Proof of Theorem 3.1 We consider the integer valued function

ϕ =
∑

λ∈	

1λ+S/2.

The hypothesis about the covolume of	 and the volume of S/2 imply that themean1 of
the periodic function ϕ satisfiesM(ϕ) > k. In particular, as ϕ has integer values, there
exists x0 ∈ Rn such thatϕ(x0) ≥ k+1 (note that this argument is similar to pigeonhole
principle). So there exists λ0, . . . , λk ∈ 	, with the λi sorted in lexicographical order
(for a chosen basis), such that the x0 − λi all belong to S/2. As S/2 is centrally
symmetric, as λi − x0 belongs to S/2 and as S/2 is convex, ((x0 − λ0) + (λi −
x0))/2 = (λi − λ0)/2 also belongs to S/2. Then, λi − λ0 ∈ (	\{0}) ∩ S for every
i ∈ {1, . . . , k}. By hypothesis, these k vectors are all different. To obtain 2k different
points of S∩	\{0} (instead of k different points), it suffices to consider also the points
λ0 − λi ; this collection is disjoint from the collection of λi − λ0 because the λi are
sorted in lexicographical order. This proves the theorem. 
�

Minkowski theorem can be seen as a result about the function ρ� . Recall that for a
lattice 	,

∑
u∈S ρ	(u) equals exactly the number of elements of S ∩ 	. Then, for a

centrally symmetric convex body S ⊂ Rn ,

∑

u∈S
ρ	(u) ≥ 2�D(	)Vol(S/2)� − 1.

1 Here, themean is takenwith respect to Lebesguemeasure instead of countingmeasure as inDefinition 2.2.
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Simply remark that the optimal k in Theorem3.1 is given by k = �D(	)Vol(S/2)�−1.
The following result is the main theorem of the paper.

Theorem 3.2 Let � be a Minkowski compatible subset of Rn, and S ⊂ Rn be a
centrally symmetric convex body. Then

∑

u∈S
ρ�(u) ≥ D+(�)Vol(S/2).

Remark 3.3 One can note that this theorem does not involve the factor 2 present in
the classical Minkowski theorem which results of the fact that to any point of a lattice
falling in the centrally symmetric set S corresponds its opposite, which also lies in S.
The authors do not know if this factor 2 should or should not be present in Theorem 3.2
and this fact still remains to be investigated.

Proof of Theorem 3.2 The strategy of proof of this theorem is similar to that of the
classical Minkowski theorem: we consider the set � + S/2 and define a suitable
auxiliary function which depends on this set. The argument is based on a double
counting for the quantity

ρR
a = 1

Vol(BR)

∑

v∈BR∩�

1v∈(S/2+a)

∑

u∈S∩��

1v∈�1u+v∈�

D+(�)
. (1)

Since the set � is discrete, the indexes in the two sums of (1) take a finite number of
values. When R is large, ρR

a can be interpreted as the approximate frequency of the
differences falling in S with the restriction that one of the points (in the difference)
is in S/2 + a. It can also be interpreted as the local approximate frequency in a
neighbourhood of a (the neighbourhood S/2+ a). The convenience of this restriction
is expressed in (3). A way to get a global expression, from this local definition of the
frequency, is to sum over a ∈ Rn .

∫

Rn
ρR
a dλ(a) = 1

Vol(BR)

∑

v∈BR∩�

∑

u∈S∩��

1v∈�1u+v∈�

D+(�)

∫

Rn
1a∈(S/2+v)dλ(a)

= 1

Vol(BR)

∑

v∈BR∩�

∑

u∈S∩��

1v∈�1u+v∈�

D+(�)
Vol(S/2)

= Vol(S/2)
∑

u∈S∩��

1

Vol(BR)

∑

v∈BR∩�

1v∈�1u+v∈�

D+(�)
.

Thus, by the definition of ρ� , we get

lim
R→+∞

∫

Rn
ρR
a dλ(a) ≤ Vol(S/2)

∑

u∈S∩��

ρ�(u). (2)

In sight of the last inequality, it remains to show a lower bound on the left hand
side. First of all, we remark that as S is a centrally symmetric convex body, x, y ∈ S/2
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implies that x + y ∈ S, thus

1v∈S/2+a1u∈S ≥ 1v∈S/2+a1u+v∈S/2+a . (3)

Hence, multiplying both sides by 1v∈�1u+v∈� , we get

1v∈(S/2+a)∩�1u∈S1u+v∈� ≥ 1v∈(S/2+a)∩�1u+v∈(S/2+a)∩�.

We now sum this inequality over u ∈ �� to get

∑

u∈S∩��

1v∈(S/2+a)∩�1u+v∈� ≥ 1v∈(S/2+a)∩�

∑

u∈��

1u+v∈(S/2+a)∩�.

Remarking that for every v ∈ �, every v′ ∈ � can be written as v′ = u + v with
u ∈ ��, we deduce that

∑

u∈S∩��

1v∈(S/2+a)∩�1u+v∈� ≥ 1v∈(S/2+a)∩�

∑

v′∈�

1v′∈(S/2+a)∩�

= 1v∈(S/2+a)∩�#((S/2 + a) ∩ �),

and finally,

ρR
a ≥ 1

D+(�)

1

Vol(BR)

∑

v∈BR∩�

1v∈(S/2+a)#((S/2 + a) ∩ �).

We denote by BS
R the S-interior of BR and by B

S
R the S-expansion of BR ,

BS
R = (B�

R + S)� = {x ∈ BR | ∀s ∈ S, x + s ∈ BR},
B
S
R = BR + S = {x + s | x ∈ BR, s ∈ S}.

In particular, a ∈ BS
R implies that S/2 + a ⊂ BR and a ∈ BR implies that S/2 + a ∈

B
S
R . Then

∫

Rn
ρR
a dλ(a) ≥ 1

D+(�)

1

Vol(BR)

∫

Rn

( ∑

v∈BR∩�

1v∈(S/2+a)#((S/2 + a) ∩ �)
)
dλ(a)

≥ 1

D+(�)

1

Vol(BR)

∫

BS
R

( ∑

v∈BR∩�

1v∈(S/2+a)#((S/2 + a) ∩ �)
)
dλ(a)

≥ 1

D+(�)

1

Vol(BR)

∫

BS
R

#((S/2 + a) ∩ �)2dλ(a).
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Using the convexity of x �→ x2, we deduce that

lim
R→+∞

∫

Rn
ρR
a dλ(a)

≥ lim
R→+∞

Vol(BS
R)

D+(�)Vol(BR)

( 1

Vol(BS
R)

∫

BS
R

#((S/2 + a) ∩ �)dλ(a)
)2

. (4)

We then use the fact that the family {BR}R>0 is van Hove when R goes to infinity (see
for example [14, Eq. 4]), that is

lim
R→+∞

Vol(BR) − Vol(BS
R)

Vol(BR)
= 0 and lim

R→+∞
Vol(BR) − Vol(B

S
R)

Vol(BR)
= 0.

It remains to compute the remaining term in (4),

1

Vol(BS
R)

∫

BS
R

#((S/2 + a) ∩ �)dλ(a).

The quantity #((S/2+ a) ∩ �) is bounded by some constant M (as S can be included
in some ball of large radius), independently from a and is equal to

∑

v∈BR∩�

1v∈(S/2+a)∩� for all a ∈ BS
R .

Hence,

1

Vol(BS
R)

∣∣∣
∫

BS
R

#((S/2 + a) ∩ �)dλ(a) −
∫

B
S
R

∑

v∈BR∩�

1v∈S/2+adλ(a)

∣∣∣

≤ M
Vol(B

S
R\BS

R)

Vol(BS
R)

;

thus the two integrals have the same limit superior when R tends to +∞. Besides,

1

Vol(BS
R)

∫

B
S
R

∑

v∈BR∩�

1v∈S/2+adλ(a) = 1

Vol(BS
R)

∑

v∈BR∩�

∫

B
S
R

1a∈S/2+vdλ(a)

= 1

Vol(BS
R)

∑

v∈BR∩�

Vol(S/2)

= Vol(BR)

Vol(BS
R)

#(BR ∩ �)

Vol(BR)
Vol(S/2).

Applied to (4), this gives

lim
R→+∞

∫

Rn
ρR
a dλ(a) ≥ Vol(S/2)2D+(�).
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Fig. 1 Example 3.5 of equality
case in Corollary 3.4 for k = 3
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To finish the proof, we combine the last inequality with the first estimate of (2) and
get ∑

u∈S∩��

ρ�(u) ≥ Vol(S/2)D+(�). 
�

We now give an alternative version of Theorem 3.2, where the volume of the set
S/2 is replaced by the number of integer points it contains (a similar statement had
already been obtained by M. Henk for sublattices of Zn in [7]).

Corollary 3.4 If � ⊂ Zn is Minkowski compatible, then

∑

u∈S
ρ�(u) ≥ D(�)#(S/2 ∩ Zn).

The idea of the proof of this corollary is identical to that of Theorem 3.2, but instead
of integrating ρR

a (see (1)) over Rn , one sums ρR
a over Zn .

The case of equality in this corollary is attained even in the non-trivial case where
#(S/2 ∩ Zn) > 1, as shown by the following example.

Example 3.5 If k is an odd number, if � is the lattice kZ × Z, and if S is a centrally
symmetric convex set such that (see Fig. 1)

S ∩ Z2 = {
(i, 0) | i ∈ {−(k − 1), . . . , k − 1}} ∪ { ± (i, 1) | i ∈ {1, . . . , k − 1}},

then
∑

u∈S ρ(u) = 1, D(�) = 1/k and #(S/2 ∩ Z2) = k.

4 Weakly Almost Periodic Sets

In this section, we assume that every set � considered is Minkowski compatible. We
describe a family of discrete sets called weakly almost periodic sets. For these sets,
the superior limits appearing in the definitions of the upper density and the frequency
of differences are actually limits. Roughly speaking, a weakly almost periodic set �

is a set for which two large patches are almost identical, up to a set of upper density
smaller than ε. More precisely, we have the following definition.
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Fig. 2 Construction of a model
set
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Definition 4.1 We say that a set � is weakly almost periodic if for every ε > 0, there
exists R > 0 such that for every x, y ∈ Rn , there exists v ∈ Rn such that

#((B(x, R) ∩ �)�((B(y, R) ∩ �) − v))

Vol(BR)
≤ ε. (5)

Note that the vector v is different from y − x a priori. Of course, every lattice, or
every finite union of translates of a given lattice, is weakly almost periodic.

An important class of examples ofweakly almost periodic sets is given bymodel sets
(sometimes also called “cut-and-project” sets). These sets have numerous applications
to theory of quasicrystals, harmonic analysis, number theory, discrete dynamics etc.
(see for instance [10] or [13]).

Definition 4.2 Let 	 be a lattice of Rm+n , p1 and p2 the projections of Rm+n on
respectively Rm × {0}Rn and {0}Rm × Rn , andW a Riemann integrable subset of Rm .
The model set modelled on the lattice 	 and the window W is (see Fig. 2)

� = {p2(λ) | λ ∈ 	, p1(λ) ∈ W }.

In [5] it is proved that these sets are weakly almost periodic sets. Moreover, if
the projection p2 is injective when restricted to 	, and the set p2(	) is dense, then
the density of the obtained model set is equal to Vol(W ) covol(	) (see for example
Proposition 4.4 of [11]).

Aweakly almost periodic set possesses a uniform density, as stated by the following
proposition of [5].

Proposition 4.3 Let � be a weakly almost periodic set. Then there exists a number
D(�), called the uniform density of �, satisfying: for every ε > 0, there exists Rε > 0
such that for every R > Rε and every x ∈ Rn,

∣∣∣
#(B(x, R) ∩ �)

Vol(B(x, R))
− D(�)

∣∣∣ < ε.

In particular, D(�) = D+(�), and for every x ∈ Rn, we have

D(�) = lim
R→+∞

#(B(x, R) ∩ �)

Vol(B(x, R))
.

123



Discrete Comput Geom

Fig. 3 Covering the set
B(z, R)�B(z + v, R) by cubes
of radius R0 (the same process
can be done for euclidean balls)

×
z
×z + v

As noted in [5], it seems that the notion of weakly almost periodicity is the weakest
that allows this uniform convergence of density.

The following lemma states that the occurrences of a given difference in a weakly
almost periodic set form a weakly almost periodic set.

Lemma 4.4 Let v ∈ Rn and � be a discrete weakly almost periodic set. Then the set

{x ∈ � | x + v ∈ �} = � ∩ (� − v)

is weakly almost periodic.

Proof Let ε > 0 and v ∈ Rn . As � is a weakly almost periodic set, for every ε > 0,
there exists R > 0 such that for every x, y ∈ Rn , there exists w ∈ Rn such that

#((B(x, R) ∩ �)�((B(y, R) ∩ �) − w))

Vol(BR)
≤ ε. (6)

On the other hand, taking ε = 1 in Definition 4.1, we deduce that there exists
R0 > 0 such that for every y ∈ Rn , we have

#(B(y, R0) ∩ �) ≤ #(BR0 ∩ �) + Vol(BR0).

By covering the symmetric difference B(z, R)�B(z + v, R) by balls of radius R0 as
in Fig. 3, we deduce that there exists a constant C > 0 such that, for every z ∈ Rn

(and in particular for x and y):

#((B(z, R) ∩ �)�((B(z + v, R) ∩ �)))

Vol(BR)
= #((B(z, R)�B(z + v, R)) ∩ �)

Vol(BR)

≤ C
Vol((B(z, R)�B(z + v, R)))

Vol(BR)
.

Thus, considering a smaller ε if necessary, one can choose R arbitrarily large compared
to ‖v‖. In this case, we get,

#((B(z, R) ∩ �)�((B(z + v, R) ∩ �)))

Vol(BR)
≤ ε. (7)
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Let x, y ∈ Rn . We can now estimate the quantity

A
.= #((B(x, R) ∩ � ∩ (� − v))�(

(
B(y, R) ∩ � ∩ (� − v)) − w))

Vol(BR)
:

A ≤ #((B(x, R) ∩ �)�((B(y, R) ∩ �) − w))

Vol(BR)

+ #((B(x, R) ∩ (� − v))�((B(y, R) ∩ (� − v)) − w))

Vol(BR)
.

The first term is smaller than ε by (6); and the second term (denoted by A2) is equal
to (by a translation of vector v)

A2 = #((B(x + v, R) ∩ �)�((B(y + v, R) ∩ �) − w))

Vol(BR)
,

which by (6) and (7) leads to

A2 ≤ 3ε.

Finally, A ≤ 4ε. 
�
When � is weakly almost periodic, we deduce, from Lemma 4.4 together with

Proposition 4.3, that the upper limits appearing in the uniform upper density D+(�)

and the frequencies of differences ρ�(v) are, in fact, limits. Moreover, ρ� possesses a
mean (see Definition 2.2) that can be computed easily.

Proposition 4.5 If the conclusion of Proposition 4.3 holds, then

M(ρ�) = D(�).

In particular, this is the case when the set � is Minkowski compatible and weakly
almost periodic.

Proof This proof lies primarily in an inversion of limits.
Let ε > 0. As � satisfies the conclusion of Proposition 4.3, there exists R0 > 0

such that for every R ≥ R0 and every x ∈ Rn , we have

∣∣∣D(�) − � ∩ B(x, R)

Vol(BR)

∣∣∣ ≤ ε. (8)

So, we choose R ≥ R0, x ∈ Zn and compute

1

Vol(BR)

∑

v∈B(x,R)

ρ�(v)

= 1

Vol(BR)

∑

v∈B(x,R)

D
(
(� − v) ∩ �

)

D(�)
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= 1

Vol(BR)

∑

v∈B(x,R)

lim
R′→+∞

1

Vol(BR′)

∑

y∈BR′

1y∈�−v1y∈�

D(�)

= 1

D(�)
lim

R′→+∞
1

Vol(BR′)

∑

y∈BR′
1y∈�

1

Vol(BR)

∑

v∈B(x,R)

1y∈�−v

= 1

D(�)
lim

R′→+∞
1

Vol(BR′)

∑

y∈BR′
1y∈�

︸ ︷︷ ︸
first term

1

Vol(BR)

∑

v′∈B(y+x,R)

1v′∈�

︸ ︷︷ ︸
second term

.

By (8), the second term is ε-close to D(�). Considered independently, the first term
is equal to D(�) [still by (8)]. Thus, we have

∣∣∣
1

Vol
(
B(x, R)

)
∑

v∈B(x,R)

ρ�(v) − D(�)

∣∣∣ ≤ ε,

which conclude the proof. 
�

5 Applications

5.1 Application to Diophantine Approximation

5.1.1 A Dirichlet Theorem for Quasicrystals

In this section, we develop a generalization of Dirichlet theorem for approximations
of irrational numbers. We give this theorem for completeness.

Theorem 5.1 (Dirichlet) Let α = (α1, . . . , αn) be such that at least one of the αi is
irrational. Then there are infinitely many tuples of integers (x1, . . . , xn, y) such that
the highest common factor of x1, . . . , xn, y is 1 and that

∣∣∣αi − xi
y

∣∣∣ ≤ y−1−1/n for i = 1, . . . , n.

Onemay be interested by approximations of real numbers by tuples in sets different
from Zn+1, for instance quasicrystals. The following result is an easy consequence
of Theorem 3.2 which is convenient for the study of Diophantine approximations in
weakly almost periodic sets.

Corollary 5.2 Let L1, . . . , Ln be n linear forms on Rn such that det(L1, . . . , Ln) �=
0. Let A1, . . . , An be positive real numbers and let � be a Minkowski compatible set.
Then

∑

x : ∀i, |Li (x)|≤Ai

ρ�(x) ≥ D(�)A1 . . . An| det(L1, . . . , Ln)|−1.
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Proof Apply Theorem 3.2 to S = {x ∈ Rn | ∀i, |Li (x)| ≤ Ai } . 
�
The following corollary is a version ofDirichlet theorem forweakly almost periodic

sets.

Corollary 5.3 Let Q > 0. Let � ⊂ Rn+1 be a Minkowski compatible set and
let α = (α1, . . . , αn) be real numbers. Then there exist at least two points
v = (xv

1 , . . . , x
v
n , yv) and w = (xw

1 , . . . , xw
n , yw) in � such that

∣∣∣αi − xv
i − xw

i

yv − yw

∣∣∣ ≤
( 2

D(�)

)1/n|yv − yw|−1−1/n (9)

with the additional property that |yv − yw| ≤ 2Q/D(�).

Proof Define for any i ∈ {1, . . . , n} the linear form Li : Rn+1 → R by

Li (x1, . . . , xn, y) = xi − αi y

and Ln+1(x1, . . . , xn, y) = y. We have immediately that det(L1, . . . , Ln) = 1. We
apply Corollary 5.2 with A1 = . . . = An = Q−1/n and An+1 = 2Q/D(�), thus

∑

(x1,...,xn ,y)∈��\{0}
∀i, |Li (x)|≤Ai

ρ�(x) ≥ 1.

In particular, there exists a point u in �� which is a difference of two different points
v = (xv

1 , . . . , x
v
n , yv) and w = (xw

1 , . . . , xw
n , yw) in the weakly almost periodic set

� and such that ∀i , |Li (v − w)| ≤ Ai . Then for each i ≤ n, |Li (v − w)| ≤ Ai and
|Ln+1(v − w)| ≤ An+1 imply

∣∣∣αi − xv
i − xw

i

yv − yw

∣∣∣ ≤
( 2

D(�)

)1/n|yv − yw|−1−1/n

and |yv − yw| ≤ 2Q/D(�). 
�
Let us state a direct consequence of Corollary 5.3 for � ⊂ Zn+1 and α /∈ Qn . In

this case, choose an index i0 such that αi0 /∈ Q, and consider the line of R2 defined
by xi0 − αi0 y = 0. This line does not meet Z2\{0}, so the smallest norm of the points
(xi0 , y) ∈ Z2\{0} satisfying |xi0 − αi0 y| ≤ Q−1/n goes to infinity when Q goes to
infinity. Thus, the smallest norm of the points x ∈ Zn+1\{0} satisfying |Li (x)| ≤ Ai

for all i goes to infinity when Q goes to infinity (recall that A1 = . . . = An = Q−1/n

and An+1 = 2Q/D(�)). By choosing a sequence (Qp)p of positive numbers tending
to infinity, we deduce that there exists an infinite number of couples (xv

i , yv) and
(xw

i , yw) of points of � satisfying (9).
Remark that the approximation quality highly depends on the density of the con-

sidered set �. In particular, we will find at least one direction in � close to α (close
with a factor comparable to Q−1−1/n) in one ball of size comparable with Q. This can
be seen as a non-asymptotic counterpart of the strong results of [9] (Fig. 4).
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Fig. 4 For a fixed chosen
direction α, one can find two
points in a Penrose tilling
defining a line whose slope is
close to α. Two different chosen
directions are shown. Penrose
tilings are model sets, thus are
weakly almost periodic (see [3])

5.1.2 Frequency of Differences and Approximations

Theorem 3.2 gives informations about the simultaneous approximations of a set of
numbers for an arbitrary norm: given a norm N on Rn and a n-tuple of Q-linearly
independent numbers α = (α1, . . . , αn), we look at the set

Eε
α = {y ∈ Z | ∃x ∈ Zn : N (yα − x) < ε}

=
{
y ∈ Z | ∃x ∈ Zn : N(

α − x

y

)
<

ε

y

}
.

This set is a model set modelled on the lattice spanned by the matrix

⎛

⎜⎜⎜⎝

−1 α1
. . .

...

−1 αn

1

⎞

⎟⎟⎟⎠

and on the window W = {x ∈ Rn | N (x) < ε}, in particular it is a weakly almost
periodic set. Its density can be easily computed: Eε

α is the set of y ∈ Z such that the
projection of yα on Rn/Zn belongs to prRn/Zn (W ). But the rotation of angle α on
Rn/Zn is ergodic (as it forms a Q-free family), so the density of Eε

α is equal to the
area of prRn/Zn (W ), which is equal to Vol(W ) as long as W does not intersect any
integer translate of itself. Then Theorem 3.2 asserts that for every d > 0,

∑

u∈Z|u|≤d

ρEε
α
(u) ≥ d Vol(W ).

In other words, given v ∈ Eε
α , the average number of points v′ ∈ Eε

α such that
|v − v′| ≤ d is bigger than d Vol(W ).
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5.2 Application to the Dynamics of the Discretizations of Linear Maps

Here, we recall a theorem of [6] and sketch its proof, which crucially uses Minkowski
theorem for weakly almost periodic sets.

We take a Euclidean projection2 π of Rn onto Zn ; given A ∈ GLn(R), the dis-
cretization of A is the map Â = π ◦ A : Zn → Zn . This is maybe the simplest way
to define a discrete analogue of a linear map. We want to study the action of such
discretizations on the set Zn ; in particular if these maps are far from being injective,
then when applied to numerical images, discretizations will induce a loss of quality
in the resulting images.

Thus, we study the rate of injectivity of discretizations of linear maps: given a
sequence (Ak)k∈N of linear maps, the rate of injectivity in time k of this sequence is
the quantity

τ k(A1, . . . , Ak) = lim
R→+∞

#(( Âk ◦ . . . ◦ Â1)(BR ∩ Zn))

#(BR ∩ Zn)
∈ ]0, 1].

To prove that the limit of this definition is well defined, we show that

lim sup
R→+∞

#(( Âk ◦ . . . ◦ Â1)(BR ∩ Zn))

#(BR ∩ Zn)
= | det(A1 . . . Ak)|D+(( Âk ◦ . . . ◦ Â1)(Zn))

and use the fact that the set ( Âk ◦ . . .◦ Â1)(Zn) is weakly almost periodic. In particular,
when all the matrices are of determinant ±1, we have

τ k(A1, . . . , Ak) = D+(( Âk ◦ . . . ◦ Â1)(Zn))

Then, Theorem 3.2 applies to prove the next result.

Theorem 5.4 Let (Pk)k≥1 be a generic3 sequence of matrices4 of On(R). Then

τ k((Pk)k≥1) −→
k→+∞ 0.

Thus, for a generic sequence of angles, the application of successive discretizations
of rotations of these angles to a numerical image will induce an arbitrarily large loss
of quality of this image (see Fig. 5).

Let us explain why the proof of Theorem 5.4 (which can be found as a whole in
[6]) requires Theorem 3.2. The idea is to study the set of differences of the sets

�k = (P̂k ◦ . . . ◦ P̂1)(Zn).

2 That is, π(x) is (one of the) point(s) of Zn the closest from x for the Euclidean norm.
3 A property concerning elements of a topological set X is called generic if it is satisfied on at least a
countable intersection of open and dense sets. In particular, Baire theorem implies that if this space is
complete (as here), then this property is true on a dense subset of X .
4 The set of sequences of matrices is endowed with the norm ‖(Pk )k≥1‖ = supk≥1 ‖Pk‖, making it a
complete space (see Note 3).
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Fig. 5 Original image (left) of
size 220 × 282 and ten
successive random rotations of
this image (right), obtained with
the software Gimp (linear
interpolation algorithm)

The first step is to prove that these sets are weakly almost periodic, to be able to prove
some uniform distribution results ([6, Thm. 2 and Lem. 4]). Then, by analysing the
action of the discretization of a generic map on the frequency of differences, one can
prove the following lemma, obtained by combining Proposition 4 (ii)5 and the second
paragraph of [6, p. 83].

Lemma 5.5 For every k, for every isometry P ∈ On(R) and every ε > 0, there exist
δ > 0 and a matrix Q ∈ On(R) such that d(P, Q) < ε satisfying: for every v0 ∈ Zn,

(i) either there exists v1 ∈ Zn\{0} such that ‖v1‖2 < ‖v0‖2 and that

ρQ̂(�k )
(v1) ≥ δρ�k (v0);

(ii) or

D(Q̂(�k)) ≤ D(�)(1 − δρ�k (v0)).

In other words, in case (i), making a ε-small perturbation of P if necessary, if a
difference v0 appears with a positive frequency in �, then some difference v1 �= 0
will also appear with positive frequency, with the fundamental property that ‖v1‖2 <

‖v0‖2. In case (ii), the rate of injectivity strictly decreases between times k and k + 1.
We then iterate this process, as long as we are in the first case of the lemma: starting

from a difference v0 appearing with a frequency ρ0 in �k , one can build a sequence
of differences (vm) of vectors of Zn with decreasing norm such that for every m we
have ρ�k+m (vm) ≥ δmρ0. Ultimately, this sequence of points (vm) will go to 0 (as it
is a sequence of integral points with decreasing norms). Thus, there will exist a rank
m0 ≤ ‖v0‖22 such that we will be in case (ii) of the lemma (which is the only case
occurring when ‖v0‖2 = 1). Then, we will get

D(�k+m0) ≤ D(�k)(1 − δm0ρ�(v0)).

It remains to initialize this construction, that is, to find a difference v0 ∈ Zn “not
too far from 0” and such that ρ�(v0) is large enough. This step simply consists in the

5 Unfortunately, there is a misprint in the first inequality of (ii): at the left side a constant depending only
on ‖P−1‖ is missing.
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application of Theorem 3.2: applying it to S = B(0, r) with μn(r/2)n = 2/D(�),
one gets

∑

u∈B(0,r)

ρ�(u) ≥ 2,

thus

∑

u∈B(0,r)\{0}
ρ�(u) ≥ 1.

As the support of ρ� is included in Zn , and as #(B(0, r) ∩ Zn) ≤ μn(r + 1)n , this
implies that there exists u0 ∈ B(0, r) ∩ (Zn\{0}) such that

ρ�(u0) ≥ 1

μn(r + 1)n
,

which gives for r ≥ 1

ρ�(u0) ≥ D(�)

22n+1 .

This allows to estimate the “loss of injectivity” D(�k) − D(�k+m0) that occurs
between times k and k + m0. Theorem 5.4 is obtained by applying this reasoning
many times.
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